首页> 外文OA文献 >Biogeochemical controls on methane, nitrous oxide, and carbon dioxide fluxes from deciduous forest soils in eastern Canada
【2h】

Biogeochemical controls on methane, nitrous oxide, and carbon dioxide fluxes from deciduous forest soils in eastern Canada

机译:加拿大东部落叶林土壤甲烷,一氧化二氮和二氧化碳通量的生物地球化学控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The exchange of the important trace gases, methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2), between forested soils and the atmosphere can show great temporal and spatial variability. We measured the flux of these three gases over 2 years along catenas at two forested sites, to determine the important controls. Well-drained soils consumed atmospheric CH4, while poorly drained swamp soils embedded in depressions were a source. CH4 fluxes could be predicted primarily by temperature and moisture, and tree cover exerted an influence mainly through the creation of large soil porosity, leading to increased consumption rates. In contrast, there were very poor relationships between N2O fluxes and environmental variables, reflecting the complex interactions of microbial, edaphic, and N cycling processes, such as nitrification in well‐drained soils and denitrification in poorly drained soils, which led to N2O production (or consumption) in soils and hence larger variability. At the broad temporal and spatial scale, soil C:N ratio was a good predictor of N2O emission rates, through its influence upon N cycling processes. Soil CO2 emission rates showed less spatial and temporal variability, and were controlled by temperature and moisture. The source strength, in global warming potential of CH4 and N2O fluxes in CO2 equivalents, was reduced markedly when trace gas fluxes from 5 to 15% poorly drained soils were included in the net global warming potential calculation of whole forested watersheds. Soils drainage class integrates many of the biogeochemical processes controlling the flux of these gases providing a framework for extrapolating results.
机译:森林土壤与大气之间重要的微量气体甲烷(CH4),一氧化二氮(N2O)和二氧化碳(CO2)的交换可能显示出很大的时空变化。我们在2年的时间里测量了这两个气体在两个林木场所沿连系的通量,以确定重要的控制措施。排水良好的土壤消耗了大气中的CH4,而排水不良的沼泽土壤则埋藏在洼地中。 CH4通量主要可以通过温度和湿度来预测,而树木的覆盖主要通过形成较大的土壤孔隙度来产生影响,从而导致消耗率增加。相比之下,N2O通量与环境变量之间的关系非常差,反映了微生物,深层和N循环过程之间的复杂相互作用,例如排水良好的土壤中的硝化作用和排水不良的土壤中的反硝化作用,导致N2O的产生(或消耗),因此变异性更大。在广泛的时空尺度上,土壤碳氮比通过影响氮循环过程,可以很好地预测氮氧化物的排放速率。土壤CO2排放速率显示出较小的时空变化,并且受温度和湿度控制。当将5%到15%排水不良的土壤中的微量气体通量纳入整个森林流域的净全球升温潜能计算中时,CH4和N2O通量的全球升温潜势的源强度(以CO2当量计)显着降低。土壤排水类别集成了许多控制这些气体通量的生物地球化学过程,为推断结果提供了框架。

著录项

  • 作者

    Ullah, Sami; Moore, Tim R.;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号